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We study an autocatalytic reaction-diffusion scheme, the Gray-Scott model, when the mixing processes do
not homogenize the reactants. Starting from the master equation, we derive the resulting coupled, nonlinear,
stochastic partial differential equations that rigorously include the spatiotemporal fluctuations resulting from
the interplay between the reaction and mixing processes. The fields are complex and depend on correlated
complex noise terms. We implement a method to solve for these complex fields numerically and extract
accurate information about the system evolution and stationary states under different mixing regimes. Through
this example, we show how the reaction-induced fluctuations interact with the temporal nonlinearities, leading
to results that differ significantly from the mean-field �perfectly mixed� approach. This procedure can be
applied to an arbitrary nonlinear reaction diffusion scheme.
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Reaction diffusion networks are relevant to a broad scope
of chemical, biological, and nonlinear optical systems where
the agents must diffuse about before they meet and react �1�.
To date, much of the theoretical work devoted to the analysis
of reaction network dynamics has been based on the assump-
tion that the system is “well mixed,” i.e., that the concentra-
tion of each species is always uniform throughout the sys-
tem. This regime is then solved using mean-field
approximations, which may be adequate under perfect stir-
ring conditions or equivalently when the diffusion rates are
very high. But if the reaction rates are nonlinear, which is the
case of the ubiquitous autocatalytic and catalytic networks,
any departure from the assumption of perfect mixing can
have major dynamical consequences. There are numerous
experimental evidences on the outcome of catalytic pro-
cesses under imperfect mixing �2�. For instance, it has been
experimentally shown that imperfect mixing in autocatalytic
systems can lead to chemical reactions that occur at seem-
ingly random intervals �3�, crystallization processes that
yield sometimes all left-handed and sometimes all right-
handed crystals �4�, and reactions in which changing the rate
at which a solution is stirred can cause a transition from a
stationary, time-independent state to one of periodic, or even
chaotic oscillation �5�. These phenomena have been studied
primarily in inorganic chemical media, but there are impli-
cations also for relevant biological systems: hypercycle net-
works, viral quasispecies dynamics, ecosystems, etc. �6–8�.
There is a wealth of theoretical works related to the effects of
fluctuations on these systems that intuitively show the rel-
evance that density fluctuations may have on stability, pat-
tern formation, and the effects of dimensionality �9�. How-
ever, in these approaches, the fluctuations are simply added
ad hoc to the mean-field description and the noise strength
and correlations are chosen arbitrarily.

In this Brief Report, we address this issue and work

through a general-purpose, mathematical, and numerical pro-
cedure to study the mixing process in reaction-diffusion
problems. The mixing process in nonlinear reaction systems
has been described mostly for simple reaction schemes �10�
but has not been fully exploited to solve for the Langevin-
type equation, since the fluctuations in the general case turn
out to be complex. Our approach is based on �i� the applica-
tion of a standard, field-theoretic method to characterize the
reaction-induced fluctuations and derive a Langevin-type de-
scription of the underlying molecular dynamics; �ii� the non-
dimensionalization of the problem to characterize the depen-
dence on the agents’ diffusivities, reaction rates, and the
spatial dimension; and �3� the separation of the real and
imaginary parts of the noise to solve numerically for the real
and imaginary parts of the stochastic fields. As an example of
this consistent description, we treat the Gray-Scott �GS�
model in two spatial dimensions �11� and vary the diffusion
rates to rigorously explore different mixing regimes. We
choose this model to facilitate visualizing the differences be-
tween perfect and imperfect mixing because the GS model is
known to exhibit spatial pattern formation and to be very
sensitive to multiplicative noise �12�. This procedure can be
applied to an arbitrary reaction scheme for any spatial di-
mension. The method presented here allows one to solve for
the full set of complex Langevin equations and to extract
information about the spatiotemporal time evolution of the
system and its stationary states under different mixing re-
gimes. We show numerically that only the noise averaged
real parts of the complex fields correspond to the density of
the reactants. We compare our results to the mean-field case,
which is recovered only in the infinite diffusion limit.

The GS model, corresponds to the following chemical
reactions:

U + 2V→
�

3V ,

V→
�

p ,

U→
�

q ,

*Electronic address: zorzanomm@inta.es; URL: http://
www.cab.inta.es

†Electronic address: hochberg@laeff.esa.es
‡Electronic address: fmoran@solea.quim.ucm.es

PHYSICAL REVIEW E 74, 057102 �2006�

1539-3755/2006/74�5�/057102�4� ©2006 The American Physical Society057102-1

http://dx.doi.org/10.1103/PhysRevE.74.057102


→
u0

U . �1�

The concentrations of the chemical species V and U are func-
tions of d-dimensional space x� and time t. � is the reaction
rate, p and q are inert products, � is the decay rate of V, and
� is the decay rate of U. The equilibrium concentration of b
is u0 /�, where u0 is the feed rate constant. The chemical
species U and V can diffuse with independent diffusion con-
stants Du and Dv. All the model parameters are positive.

The master equation associated with Eq. �1� can be
mapped to a second-quantized description following a
procedure developed by Doi �13�. Briefly, we introduce an-
nihilation and creation operators ai and ai

† for V and bi
and bi

† for U at each lattice site i, with the commutation
relations �ai ,aj

†�=�ij and �bi ,bj
†�=�ij. The vacuum state

satisfies ai �0�=bi �0�=0. We then define the time-dependent
state vector ���t��=��m	,�n	P��m	 , �n	 , t�
i�ai

†�mi�bi
†�ni �0�.

P��m	 , �n	 , t� is the probability to find mi U and ni V particles
at site i at time t. The master equation can be written as a

Schrödinger-like equation −
����t��

�t =H ���t��, where the lat-
tice Hamiltonian or time-evolution operator is a function of
ai ,ai

† ,bi ,bi
† and is given by

H =
Dv

l2 �
�i,j�

�ai
† − aj

†��ai − aj� + u0�
i

�1 − bi
†� +

Du

l2 �
�i,j�

�bi
† − bj

†�

��bi − bj� −
�

2 �
i

��ai
†�3ai

2bi − �ai
†�2ai

2bi
†bi�

+ ��
i

�bi
† − 1�bi + ��

i

�ai
† − 1�ai. �2�

This has the formal solution ���t��=exp�−Ht� ���0��.
The operator �Eq. �2�� is next mapped onto a continuum

field theory. This procedure is now standard, and we refer to
�14� for further details. For the GS system, we obtain the

path integral exp�−Ht�=�DaDāDbDb̄e−S�a,ā,b,b̄�, over the
continuous �and generally complex� stochastic fields

a�x� , t� , ā�x� , t� ,b�x� , t� , b̄�x� , t�, where the action S is given by

S =� ddx�
0

�

dtā�ta + Dv � ā � a + b̄�tb + Du � b̄ � b + ��ā

− 1�a + ��b̄ − 1�b − u0�b̄ − 1� −
�

2
�ā3a2b − ā2a2b̄b�� . �3�

We have omitted terms related to the initial state. Apart from
taking the continuum limit, the derivation of this action is
exact and, in particular, no assumptions regarding the precise
form of the noise are required. For the final step, we perform

the shift ā=1+a* and b̄=1+b* on the action S. We represent
the terms quadratic in a* ,b* by an integration over Gaussian
noise terms, which allows us to then integrate out the conju-
gate fields �19�. To proceed, we note that e�a2b�a*2−a*b*�

��D�D	P�� ,	� e�a*�+b*	�, where the noise functions � ,	
are distributed according to a double Gaussian as P�� ,	�
=exp�−�� ,	�V−1� �

	 ��, with V the matrix of noise-noise cor-
relation functions

V = � ���� �	��
��	� �		�

� . �4�

Integrating out the conjugate fields a* and b* from the
functional integral for this shifted action then leads to
the pair of coupled nonlinear Langevin equations. We
define the dimensionless fields, u= �

�b and v= �

�a,
dimensionless time, �=�t, and spatial coordinates
xi=�� /Du x̂i, i=1, . . . ,d. The equations describing the field
dynamics read

��v�x̂i,�� =
Dv

Du
�2v − v + v2u + ��x̂i,��

��u�x̂i,�� = �2u −
�

�
u − v2u +

u0

�
+ 	�x̂i,�� , �5�

with noise correlations

���x̂i,��� = �	�x̂i,��� = 0

���x̂i,����x̂i�,���� = 
v2u�2�x̂i − x̂i����� − ���

���x̂i,��	�x̂i�,���� = −



2
v2u��x̂i − x̂i����� − ���

�	�x̂i,��	�x̂i�,���� = 0, �6�

and noise strength 
=��
��d−1�/2

Du
d/2 . In particular, for d=2 dimen-

sions, 
=
���
Du

. The nondimensionalization of the problem al-
lows us to characterize explicitly the dependence on the
agents diffusivities, reaction rates, and spatial dimension. For
a fixed reaction rate, as we will see below, the transition from
perfect to the imperfect mixing regime is associated with an
increase in 
. Note that 	 has zero autocorrelation but non-
zero cross-correlation with �, indicating that this noise is
complex. Using the Cholesky decomposition, we can express
these complex noise components as a linear combination of
two uncorrelated �real� white Gaussian noises �1, �2; thus,

��x̂i;�� = v�
u�1�x̂i;�� �7�

	�x̂i;�� = − 1
2v�
u�1�x̂i;�� + i 1

2v�
u�2�x̂i;�� . �8�

Thus, u and v are also complex fields. Through this proce-
dure we can separate the real and imaginary parts of the
noise and numerically solve the stochastic nonlinear reaction
diffusion equations �5� for the real and imaginary parts of the
fields �15�. Now we can obtain numerical information from
these complex densities. We expect the imaginary parts of
these fields to be zero, on average, since the stochastic aver-
ages �u� and �v� correspond to the physical reactant densities
�16�.

In the mean-field approximation, this system possesses
three homogeneous solutions: one absorbing state
R= �u=

uo

�
�

� ,v=0� and two nontrivial states

B±= �u=
uo±�uo

2−4��2/�
2�

�

� ,v= 1
u

�

�
�. In our simulations, we

consider the d=2 case with �=1, Dv /Du=0.5, uo=� and,
thus, the homogeneous solutions will be R= �u= 1

� ,v=0� and
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B±= �u= 1±�1−4�2/�
2

1
� ,v= 1

u
1
�

�. The state B+ is globally un-
stable. The trivial state R is linearly stable and globally at-
tracting for all ��0 and ���. The state B− is stable if
4�2��. In a narrow region of parameter space �� ,�� close
to 4�2=�, the trivial absorbing state R loses stability through
a Hopf bifurcation. In the noise-free case, it is in the vicinity
of this region where one can find a great variety of spa-
tiotemporal patterns in response to a localized initial spatial
perturbation �17�, although no patterns are found if the initial
condition is homogeneous. Here we will consider the evolu-
tion of the system described by Eqs. �5� with initial homo-
geneous condition and subject to the internal noise induced
by the reaction �Eqs. �7� and �8�� in different mixing regimes.

In Fig. 1, we display some “snapshots” of the time evo-
lution of the real part of the nutrient field u�x̂ , ŷ , t� for two
different parameter sets and two diffusion rates. When dis-
played in color, blue represents a concentration between 0.2

�

and 0.4
� , green close to 0.5

� , yellow represents an intermediate
concentration of roughly 0.8

� , and red close to 1
� . On a gray

scale, lighter grays correspond to low concentration and
darker ones to high concentration. Figures 1�a� and 1�b� rep-
resent the time evolution of the same initial homogeneous
condition �u= 1

� ,v= 0.1
�

� for �=0.095 and �=0.03. In Fig.
1�a�, a regime of high diffusion rates �
=0.01225�, initially
there are some local spatial fluctuations about the mean
value. Then, the fluctuations are homogenized due to the
high diffusivity of the reactants and the system evolves to-
ward the inactive homogeneous state R of the mean-field
approach. This is the result we may expect in a perfect mix-
ing regime. In Fig. 1�b�, we have increased the noise strength
�
=0.0225� by reducing the diffusion rates �i.e., to explore
deviations from the mean-field results we allow for the im-
perfect mixing effects�: the strong spatial incoherent fluctua-
tions give rise to spatial patterns with self-replicating and

moving globules. In the interior of each of these units, in
blue, there is a region with sustained autocatalytic production
of v that is causing the local depletion of the substrate u. A
similar experiment is shown in Figs. 1�c� and 1�d�, with a
new initial condition �u= 0.5

� ,v= 0.25
�

�, and parameter set
�=0.11025, �=0.05. The initial condition is again the same
in both cases, but in the perfect mixing regime where the
system has a high diffusion rate �and a low noise intensity,
such as 
=0.01�, it evolves to the uniform stable active state
B− �see Fig. 1�c��, whereas in the imperfect mixing regime
with low diffusion rates �and higher noise intensities, such as

=0.023�, the system evolves to a new active pattern with
globular structures. Thus, in Figs. 1�b�–1�d�, a low diffusion
rate has induced fluctuations that drive the system away from
the absorbing state R or the uniform blue state B− and
produces spatial compartmentalization.

Because of the imperfect mixing effects, the averaged
output of the reactor �integrated over x̂ and ŷ� may also
change with the diffusion rate. In Fig. 2 �a�, we show, for
�=0.0605, �=0.02 and starting with the initial homogeneous
condition �u= 0.3

� ,v= 0.25
�

�, how for the average of the real part
of the field, which corresponds to the density, different mix-
ing regimes lead to different reactor outputs. For very high
diffusion rates �and low noise intensities 
�, the system
evolves to the mean-field solution ��Re u�mf , �Re v�mf�=B−,
note that �Re v�� �Re u�. If the diffusivity of reactants is
reduced, the system evolves to a new equilibrium state with
the reversed ratio �Re v� �Re u�. Furthermore, after the ini-
tial transient time, the output of the reactor shows oscillatory

FIG. 1. �Color online� Each row of squares shows, from left to
right, the time evolution of Re u�x̂ , ŷ ,�� for a different simulation.
The initial condition, at �=0, is shown on the leftmost image, see
text for details. �a� and �b� have the same initial condition and
reaction parameters. �a� If 
→0, which corresponds to the perfect
mixing regime, then the system evolves to the uniform absorbing
state R �here shown at �=50�. �b� As 
 increases, in the imperfect
mixing regime, the system evolves to a new active state with globu-
lar replicating structures ��=50�. Equivalently, for a new initial con-
dition and parameter set, �c� evolves in the perfect mixing regime to
the uniform active state B− ��=300�, whereas �d�, in the imperfect
mixing regime, evolves to a new active state ��=300�.

FIG. 2. �a� After a transient time, in the perfect mixing limit

=0.5, the average of the real part of the field tends to the mean-
field value. However, in the imperfect mixing regime, 
=2, these
averages deviate significantly from the mean-field solution and
show oscillatory behavior. �b� The averaged imaginary parts of the
fields are always negligible since the averages correspond to
physical, real, densities.
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behavior, which increases in amplitude as we deviate from
the perfect mixing regime. In Fig. 2 �b�, we show for the
same simulations the average of the imaginary part of the
field, confirming that the averaged imaginary part is zero up
to the statistical error.

Thus, in any system governed by a nonlinear rate law, a
knowledge of the bulk or average concentrations is not suf-
ficient to predict either the average rate of the reaction, the
final equilibrium spatial distribution, or the averaged reactor
output. One must also know the spatial distribution of the
reacting material. Furthermore, there is a strong dependence
on the ratio of the reaction to diffusion rate and the mean-
field approach will only be valid in the limit where this ratio
vanishes. The noise parameter 
 is a function of the spatial
dimensionality, suggesting that the resulting rates of reaction,
spatial distribution, and global-averaged densities of reac-
tants may change from two to three dimensions and the
simple extrapolation of two-dimensional model results may
not be adequate. Finally, these results show that one can thus
tune the mixing efficiently to control the composition of the
output of the reactor and, second, that for certain ranges of
diffusion rates we may discover unexplored dynamical

ranges where spatial organization takes place. One may also
appreciate the relevance that the mixing process will have in
biological systems, such as epidemics propagation or in viral
dynamics �18�, where spatial segregation may facilitate co-
existence.

This general-purpose, consistent mathematical, and nu-
merical approach allows us to rigorously explore the effects
of reaction-induced fluctuations in imperfect mixing regimes
with complex fields and noises. Dealing with the full system,
we observe that there is multiplicative noise acting on both
fields. If we had ignored the zero-autocorrelated complex
field 	 in Eq. �6�, then only the v field would have had noise
and both field and � would have been real �15�. This approxi-
mation is not correct in the general case, and the system
outcome may be significantly different in nonlinear systems,
such as this one, which is quite sensitive to small fluctua-
tions.
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